Oscillating elastic defects

A fundamental question in elasticity theory is to
understand the patterns of deformation and strains
created by stress, defects or inhomogeneities in a
material. In a celebrated 1957 paper [1], Eshelby
derived an exact solution for the strain fields created
by an inhomogeneous elliptic inclusion in an isotropic
elastic medium. This result is a cornerstone of the
theory of inhomogeneous elastic media, nowadays
routinely used in engineering sciences. From a
physicist’s point of view, it demonstrates that a
local perturbation induces long range strain fields,
slowly decaying as 1/r? in d dimensions (d > 2, and
r being the distance from the perturbation). These
long-range and anisotropic interactions between
strain fields induce, for instance, pattern formation
in martensitic materials [3].

Eshelby’s work considered static inhomogeneities
only; in a number of applications in physics and
material science, it is actually important to consider
the dynamics of the strain fields created by an
elastic inclusion. The inhomogeneities themselves
can be oscillating: for instance, polarons tunneling
between two positions in high T, superconductors
can be viewed as locally oscillating defects. Other
aplications include the design of micro electrome-
chanical devices (MEMs). Although the dynamical
generalizations of the Eshelby problem have been
recently investigated in the context of engineering
sciences [2], no effort has been made in that direction
from a physicist’s point of view. In this work [4],
we consider the dynamical Eshelby problem for
localized oscillating defects, and focus on the general
and qualitative features of the resulting strain fields.
In particular, we ask the following specific questions:
how do the strain fields depend on the oscillating
frequency? How do defects interact with each other
through the strain fields they create?

One defect case

We consider a two-dimensional elastic medium, and
we impose the presence of an oscillating defect, rep-
resented by a locally oscillating deviatoric strain eg
(e3 essentially measures locally how much a square
is deformed into a rectangle): es(F = 0) = e sin wot.
At the level of linear elasticity, the equations can be
solved exactly, and expressions are obtained for es,
as well as for the dilatation strain e; and the shear
strain es. Fig. 1 shows such strain profiles for differ-
ent frequencies wg, and Fig. 2 shows a surface plot of
the e3 field.

This study allows us to demonstrate two important
results:
e The strain fields created by the defect decay at
large distances as 1/r2, as in the static case.
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Figure 1: Profile along (Oz) of the deviatoric strain
es, for different frequencies wg = 1 (blue), wo = 10
(red) and wg = 100 (black). The higher the frequency
wo, the more localized is the perturbation.
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Figure 2: Surface plot of the deviatoric strain eg, for
wo = 1. Notice the anisotropy of the strain field.
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e The deformation induced by the defect is pro-
gressively more localized as wg is increased; this
has an important consequence for the interaction
between defects: it can be suppressed by tuning
the frequency. This point is developed in the next
section.

Two defects case

Next, we consider the case of two defects, to probe
the interaction between them. We suppose that the
two defects, located at 7 = 0 and 7= 79, oscillate at
the same frequency wg, and have a phase difference
. Again, at the level of linear elasticity, the equa-
tions can be solved exactly, giving access to the strain
profiles. An example is given in Fig. 3.
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Figure 3: Profiles of the deviatoric strain e3 with two
defects, for wy = 1 (blue), wo = 10 (red) and wy = 100
(black). The phase difference between the two defects
is p =m.

From a given configuration of the strain fields, it is
easy to calculate the associated elastic energy; this
energy obviously oscillates with frequency wg. To
probe the interaction between the two defects, we av-
erage this energy over one period, and obtain the av-
erage energy U(p, T, wp as a function of the phase dif-
ference between the defects ¢, the distance between
them 7§ and their common frequency wy. We focus on
a situation where the defects are pinned, and interact
through their relative phase; the relevant quantity is
then U(y), at fixed 7 and wp. These energies are
well described by the “XY-like” function:

U(p,7ywo) = C(Fywo) + J(Fywo) cosp . (1)
A positive J corresponds to a ferromagnetic, or phase
locking, interaction, whereas a negative J leads to an
antiferromagnetic interaction.

Fig. 4 shows some representativeenergy profiles,
and emphasizes the effects of varying the frequency
or the distance:

e As expected, J goes to zero for large distances
and/or large frequencies.

e More dramatically, J changes sign: at low enough
wo and short enough distances, the interaction is
ferromagnetic; and antiferromagnetic otherwise.
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Figure 4: U(p,74,wp) for wg = 1 (blue), wo = 10
(red) and we = 100, and for 75 = 2% (solid lines)
and 79 = 8% (dashed lines). The interaction is always
antiferromagnetic, except for wg = 1, 79 = 2Z.

This last property may have important consequences
for the collective behavior of an assembly of defects:
one can imagine inducing phase transitions between
phase locked and disordered states by tuning the
defect oscillation frequency.

Conclusion

Summarizing, we have extended the classical study
by Eshelby of static defects in the 50’s to dynami-
cal oscillating defects . As in the static case, local
perturbation of the strain fields propagates to large
distances and decays away only as 1/r?, r being the
distance from the perturbation. However, the strain
profile strongly depends on the oscillation frequency:
the higher the frequency, the more localized the strain
field. This has important consequences for the inter-
action between several such oscillating defects, open-
ing the door to collective effects controlled by the fre-
quency. This may also have applications for the inter-
actions between polarons in high T, superconductors,
and for the design of micromechanical devices.
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